LEÇON N° 127 : EXEMPLES DE NOMBRES REMARQUABLES. EXEMPLES D'ANNEAUX DE NOMBRES REMARQUABLES, APPLICATIONS.

I/ Rationnalité et algébricité.

A/ Rationnels et irrationnels. [DUV]

 ${\bf D\acute{e}finition}$ 1 : Rationnel : corps de fractions de ${\mathbb Z}$, irrationnels.

Exemple 2 : Exemples : $\sqrt{2}$, $e \in \mathbb{R} \setminus \mathbb{Q}$ et exemples de rationnels.

Définition 3 : Définition de π comme le périmètre du demi-cercle unité.

Proposition 4 : π se définit de manière équivalente comme le générateur du noyau du morphisme $t\mapsto e^{2it}$.

Proposition 5: π est irrationnel.

Proposition 6: Si $\theta \in \mathbb{R} \setminus \mathbb{Q}$, alors $\mathbb{Z} + \theta \mathbb{Z}$ est dense dans \mathbb{R} .

Application 7: Les applications continues 1 et $\sqrt{2}$ périodiques sont constantes.

B/ Algébricité, transcendance. [PER] [DUV]

Définition 8 : Algébrique et transcendant avec application.

Exemple 9 : Exemples de nombres algébriques sur Q.

Définition 10 : Définition de $\mathbb{K}[\alpha]$ et $\mathbb{K}(\alpha)$.

Proposition 11: α est algébrique si et seulement si $[\mathbb{K}(\alpha) : \mathbb{K}] < +\infty$.

Théorème 12 : $\mathbb{M} = \{x \in \mathbb{L} \mid x \text{ est algébrique sur } \mathbb{K} \}$ est un sous-corps.

Application $13 : \overline{\mathbb{Q}}$ est un sous-corps de \mathbb{C} .

Remarque 14 : Avec les résultants, on peut trouver un polynôme annulateur de la somme ou du produit d'éléments algébriques.

Théorème 15: (admis) π et e sont transcendants.

Théorème 16 : Condition vérifiée par les algébriques.

Définition 17: Nombres de Liouville.

Proposition 18: Les nombres de Liouville sont transcendants.

Application 19: $\sum_{k=0}^{+\infty} \frac{1}{10^{k!}}$ est transcendant.

II/ Anneaux $\mathbb{Z}[\omega]$ et application en arithmétique.

 $\mathbf{A}/\ \mathbf{G\acute{e}n\acute{e}ralit\acute{e}s.}\ [\mathbf{DUV}]\ [\mathbf{PER}]$

Proposition 20 : $\mathbb{Q}(\sqrt{d})$ est un sous-corps de \mathbb{C} contenant \mathbb{Q} avec pour \mathbb{Q} -base $(1,\sqrt{d})$.

Proposition 21 : Les anneaux des entiers de $\mathbb{Q}(\sqrt{d})$ sont les $\mathbb{Z}[\omega]$, ω variant selon la congruence de d.

Exemple 22 : Les entiers de Gauss $\mathbb{Z}[i]$ et les entiers d'Eisenstein $\mathbb{Z}[j]$.

Proposition 23 : Les inversibles de $\mathbb{Z}[\omega]$.

Application 24: $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$ et $\mathbb{Z}[j]^{\times} = \{\pm 1, \pm 1 \pm j\}$.

Théorème 25 : Valeurs de d pour lesquelles $\mathbb{Z}[\omega]$ est euclidien.

Contre-exemple 26 : $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel $(6 = 3 \times 2 = (1 + i\sqrt{5})(1 - i\sqrt{5}))$ donc n'est pas euclidien.

B/ Théorème des deux carrés de Fermat. [PER]

Définition 27 : Ensemble Σ .

Proposition 28 : Σ est stable par produit.

Développement 1

 $p \in \Sigma \Leftrightarrow p = 2 \text{ ou } p \equiv 1 \mod 4.$

```
Théorème 29 : n \in \Sigma \iff v_p(n) pair pour tout p \equiv 3[4]
```

Proposition 30 : Irréductibles de $\mathbb{Z}[i]$.

C/ Application: résolution d'équations diophantiennes. [DUV]

Application 31 : Résolution de l'équation de Mordell $y^2 = x^3 - 11$.

Application 32 : Résolution de $x^5 - y^2 = 1$.

III/ Construction à la règle et au compas.

A/ Définitions et propriétés. [CAR]

Définition 33: Points constructibles.

Proposition 34 : Construction des parallèles, médiatrices, bissectrices.

Théorème 35 : L'ensemble \mathcal{C} des nombres constructibles est un sous-corps de \mathbb{R} stable par racine carrée.

B/ Lien avec la théorie des corps. [CAR]

Lemme 36 : Équations pour droites et cercles.

Développement 2.a)

Théorème 37 : Théorème de Wantzel.

Corollaire 38 : Résultat de Wantzel.

C/ Réponse aux trois problèmes historiques. [CAR]

Développement 2.b)

Corollaire 39: La duplication du cube est impossible.

Corollaire 40: La quadrature du cercle est impossible.

Corollaire 41: La trissection de l'angle est impossible en général.

Références :

- [PER] Perrin p. 65-68 et p. 56
 [DUV] Duverney Théorie des nombres p. 1, p. 47 et p. 110
 [CAR] Carréga Théorie des corps p. 13-37